Abstract

Standard logic tends to reduce propositions to their truth conditions. However propositions with the same truth conditions are not the contents of the same thoughts just as they are not the senses of synonymous sentences. I will first define a much finer criterion of propositional identity that takes into account predications that we make in expressing propositions. In my view, propositions have a structure of constituents. We ignore in which possible circumstances most propositions are true because we ignore real denotations of their attributes and concepts. In understanding them we just know that their truth in each circumstance is compatible with certain possible denotation assignments to their constituents and incompatible with others. So propositions have possible in addition to real truth conditions. I will explain why strictly equivalent propositions can have a different cognitive value. I will define the notion of truth according to an agent and a strong propositional implication that is known a priori. I will also formulate a logic of belief that is compatible with philosophy of mind. Human agents are minimally rather than perfectly rational in my logic. Epistemic paradoxes are solved.

1 Propositional identity and truth according to predication

In philosophy, propositions are both senses of sentences with truth conditions and contents of conceptual thoughts like attitudes and illocutions. In order to take into
account their double nature, I will proceed to a finer analysis in terms of predication of their logical form. Here are the basic principles of my predicative approach. ¹

1.1 A finite structure of constituents

In expressing propositions we predicate in a certain order a finite positive number of attributes (properties or relations) of objects to which we refer.² Understanding a proposition consists mainly of understanding which attributes objects of reference must possess in order that this proposition be true. We do not directly have in mind individuals like material bodies and persons. We rather have in mind concepts of individuals and we indirectly refer to them through these concepts. So our thoughts are directed towards individuals under a concept rather than pure individuals. Concepts can be deprived of denotation. By recognizing the indispensable role of concepts in reference, logic can account for thoughts directed at inexistent objects. It can also account for the predication of intensional properties that objects only possess whenever they are subsumed under certain concepts. Frege’s idea that propositional constituents are senses clearly explains the difference in cognitive value between the two propositions that Cicero is Cicero and that Cicero is Tully. We know a priori by virtue of linguistic competence the truth of the first proposition while we have to learn the truth of the second. Frege’s idea moreover preserves the minimal rationality of speakers.³ We can wrongly ignore that Cicero has another proper name and believe that Cicero is not Tully. But we cannot believe that Cicero is not Cicero. We could not be that irrational. So epistemic logic has to reject direct reference⁴ and externalism. Like Frege, Church and Strawson I advocate that any object of reference is subsumed under a concept. Proper names are often introduced into language by an initial declaration. A speaker first gives such names to objects with which he is acquainted. Next other speakers of the linguistic community adopt these names and keep using them to refer to the same objects. Later speakers who do not know much of named objects can always refer to them under the concept of being the object called by that name. Possible

² Predication as it is conceived here is independent on force and psychological mood. We make the same predication when we express a belief and a doubt that something is the case.

³ The notion of minimal rationality comes from C. Cherniak [1986]

⁴ The theory of direct reference is advocated by D. Kaplan in “On the Logic of Demonstratives” [1979]
interceptions of language must then consider in their domain two sets of senses: the set Concepts of individual concepts and the set Attributes of attributes of individuals in addition to the set Individuals of individual objects which are pure denotations.

1.2 A relation of correspondence between senses and denotations

To propositional constituents correspond real denotations of certain types in possible circumstances. Thus to each individual concept \(c_e \) corresponds in any circumstance the single individual which falls under that concept in that circumstance whenever there is such an object. Otherwise that concept is deprived of denotation in that circumstance. And to each attribute \(R_n \) of degree \(n \) of individuals corresponds the set of sequences of \(n \) objects under concepts which possess that attribute in that circumstance.\(^5\) A possible circumstance is here a complete state of the real world at a moment \(m \) in a possible course of history \(h \). As in the logic of ramified time, the set Circumstances of possible circumstances contains pairs of the form \(m/h \) where \(m \) is a moment belonging to the history \(h \). Because of indeterminism, there can be different possible historic continuations of a moment \(m \). The real continuation \(h_m \) is not yet fixed at that moment \(m \). But it represents how the world would continue if that moment were actual. If the world continues after a moment it can only continue in one way. This is the proper history of that moment. Individual things change during their existence. So different denotations can correspond to the same concept or attribute at different moments. However individuals have their essential attributes in all circumstances where they exist. For example each human being keeps the same genetic code.

Our knowledge of the world is incomplete. We do not know real denotations of most propositional constituents. We ignore also many essential properties of objects. So we often refer to an object under a concept without knowing that object. The police officer who is pursuing the murderer of Smith can just refer to whoever is that murderer. The concept gives identity criteria for the object of reference (e.g. to be Smith’s murderer). But few identity criteria enable us to identify that object. Moreover the object to which we refer is sometimes different from the denotation of our concept.\(^6\) Presumed murderers are often innocent. It can also happen that no object satisfies our identity

\(^5\) A. Church introduced the relation of correspondence in intensional logic. See “A Formulation of the Logic of Sense and Denotation” [1951]
\(^6\) See S. Kripke “Speaker Reference and Semantic Reference” [1977]
criteria. Smith could have died of a heart attack. Whoever conceives propositional constituents can always assign to them possible denotations of appropriate type. A chief of police who ignores the identity of the murderer can at least think of different persons who could have committed the crime. From a logical point of view, there are a lot of possible denotation assignments to senses. They are functions of the set \((\text{Concepts} \times \text{Circumstances}) \rightarrow \text{Individuals}) \cup ((\text{Attributes} \times \text{Circumstances}) \rightarrow \bigcup_{1 \leq n} \mathcal{P}(\text{Concepts}^n))\).

However, from a cognitive point of view, only certain entities could be according to us possible denotations of attributes and concepts that we conceive in circumstances that we consider. Whoever refers to an object considers that it could have certain properties but not others. So not all possible denotation assignments are compatible with the beliefs of agents. Suppose that the chief of police believes at the beginning of his investigation that Smith was murdered by his wife. Only possible denotation assignments according to which the same person falls under the two concepts are then compatible with his beliefs.

Let us attribute to Smith’s murderer the property of being mad. Clearly we do not know a priori actual denotations of the concept and property of that predication. But we can consider denotations that they could have. According to a first possible denotation assignment, a suspect Paul would be Smith’s murderer and that suspect would be mad. According to a second, Smith’s wife Julie would be the murderer but she would not be mad. According to a third Smith would not have been killed. Sure we need to make an empiric investigation in order to verify the predication in question. However we all know by virtue of competence that it is satisfied in a circumstance if and only if the individual that falls under its concept possesses its property in that circumstance. So we know a priori that the elementary proposition that Smith’s murderer is mad is true according to the first possible denotation assignment considered above and false according to the two others.

We respect meaning postulates. We associate denotations of appropriate types to each individual concept \(c_e\) and attribute \(R_m\) in possible circumstances. Thus \(\text{val} (c_e, m/h) \in \text{Individuals}\) when according to \(\text{val}\) the concept \(c_e\) has a denotation in circumstance
And \(\text{val} (R_n, m/h) \in \mathcal{P}(\text{Concepts}^n) \). Moreover our denotation assignments respect internal relations that exist between constituents because of their logical form. We know a priori that individuals subsumed under two concepts are identical when these two concepts have the same denotation. So for any possible assignment \(\text{val}, <c_1^e, c_2^e> \in \text{val} (=, m/h) \) when \(\text{val} (c_1^e, m/h) = \text{val} (c_2^e, m/h) \). As one can expect, the set \(\text{Val} \) of all possible denotation assignments contains a special real assignment (in symbol \(\text{val}^* \)) that associates with each concept and attribute their actual denotation in every possible circumstance. We ignore real denotations of many concepts and attributes. However we cannot have them in mind without eo ipso believing that they could have certain denotations and not others in given circumstances. So to each agent \(a \) and moment \(m \) there corresponds a unique set \(\text{Val}(a,m) \) containing all possible denotation assignments which are compatible with the beliefs of that agent at that moment. Suppose that the agent \(a \) believes at a moment \(m \) that an individual under concept \(c_e \) has (or just could have) the property \(R_i \) in a certain circumstance \(m/h \). Then for every (or for at least one) denotation assignment \(\text{val} \in \text{Val}(a,m) \), \(c_e \in \text{val} (R_i, m/h) \). By nature, we, human agents, are minimally consistent. We could not believe that the same individual under concept has and does not have a given property in the same circumstance. So the set \(\text{Val}(a,m) \) is a proper subset of the whole set \(\text{Val} \) when the agent \(a \) is conscious at the moment \(m \).

1.3 Possible truth conditions

By definition, a predication of the form \((R_n \ c_1^\downarrow, \ldots, c_n^\downarrow) \) whose attribute \(R_n \) is applied to \(n \) individuals under concepts \(c_1^\downarrow, \ldots, c_n^\downarrow \) in that order is satisfied in a circumstance \(m/h \) according to a denotation assignment \(\text{val} \) when \(<c_1^\downarrow, \ldots, c_n^\downarrow> \in \text{val} (R_n, m/h) \). So any complete possible assignment \(\text{val} \) associates certain possible truth conditions with each elementary proposition. For that proposition would be true in all and only the possible circumstances where its predication is satisfied according to that assignment \(\text{val} \) if it were real. There are few analytically true elementary propositions that predicate of objects attributes that we know a priori that they possess. So we ignore in which possible circumstances most elementary propositions are true. However we know in apprehending their logical form that elementary propositions are true in a

\footnote{Otherwise either the assignment \(\text{val} \) is undefined for the concept \(c_e \) or that concept has an arbitrary denotation like the empty set according to that assignment. See Carnap Meaning and Necessity [1956]}

5
circumstance according to all possible denotation assignments that satisfy their
predication in that circumstance and false according to others. So in my approach
propositions have above all possible truth conditions. They could be true in different
sets of possible circumstances given the possible denotations that their constituents
could have in reality. If one considers a number n of possible circumstances, one can
distinguish as many as 2^n possible truth conditions. Formally each possible truth
condition of an elementary proposition corresponds to a unique set of possible
circumstances where that proposition is true according to a particular possible
denotation assignment. Of course, from a cognitive point of view, not all such possible
truth conditions are compatible with our beliefs. In order that a proposition could be
ture according to an agent at a moment m, that proposition must then be true in the
history h_m according to at least one possible assignment val \in Val(a,m) compatible with
the beliefs of that agent at that moment. So according to the chief of police at the
beginning of his investigation Smith’s wife but not Paul could be Smith’s murderer.

Among all possible truth conditions of a proposition there are of course its actual
characteristic truth conditions that correspond to the set of possible circumstances
where it is true. Carnap did not consider other possible truth conditions By definition,
the real denotation assignment val* associates with each elementary proposition its
actual truth conditions.

1.4 A recursive definition of propositions

In my analysis, propositions have a structure of constituents: they serve to make a
finite positive number of predications. In order to make a predication of the form (R_n
c_1, c_2, ..., c_n) one must have in mind its attribute and objects under concepts. One must
also apply that attribute to these objects in the right order. One makes two different
predications in thinking that Mary loves John and that John loves Mary. The two
elementary propositions have the same constituents but different truth conditions.
However the order of predication only matters whenever it affects truth conditions.
Whenever the predicated binary relation is symmetric it does not matter at all. The
propositions that Cicero is Tully and that Tully is Cicero contain the same predication.
For that reason, a predication of the form (R_n c_1, c_2, ..., c_n) cannot be identified with the
corresponding sequence \langle R_n c_1, c_2, ..., c_n \rangle. From a logical point of view, such a
predication is rather an ordered pair whose first element is the set of its propositional constituents \(\{ R_n, c^1, \ldots, c^n \} \) and whose second element is the set of possible circumstances where it is satisfied according to the real assignment \(\text{val}^* \). Such an account identifies predications whose different order determines the same truth conditions. So the set \textit{Predications} of all predications is a subset of \(\mathcal{P}(\text{Concepts} \cup \text{Attributes}) \times (\mathcal{P}\text{Circumstances}) \). In addition to a structure of constituents propositions also have \textit{possible truth conditions}. Their truth in each possible circumstance is compatible with a certain number of possible denotation assignments to their constituents and incompatible with the others.

\textit{Elementary propositions} are the simplest propositions. They serve to make a single predication and their truth in each possible circumstance is only compatible with possible denotation assignments according to which their predication is satisfied. Other \textit{more complex propositions} are obtained by applying truth functional, modal and other operations. Complex propositions are in general composed from several elementary propositions. When they contain a single one, they are true according to different possible denotation assignments.

\textit{Truth functions} do not change the structure of constituents. They only make the predications of their arguments. Thus the \textit{negation} \(\neg P \) has the structure of constituents of \(P \). The \textit{conjunction} \((P \land Q) \) and the \textit{disjunction} \((P \lor Q) \) of two propositions \(P \) and \(Q \) are composed from elementary propositions of both. Unlike truth functions, modal and epistemic propositions serve to make new predications of \textit{modal and epistemic attributes}. In thinking that it is impossible that God makes mistakes we do more than predicate of God the property of not making mistakes. We also predicate of Him the modal property of infallibility, namely that He does not make a mistake in any possible circumstance. Infallibility is the necessitation of the property of not making mistakes. Similarly when we think that the pope believes that God exists we do more than predicate of God the property of existence, we also predicate of Him the property of being existent according to the pope. The property of being existent according to an agent is an \textit{epistemic property} different from that of being existent. Agents can wrongly believe that an object exists. Moreover they ignore the existence of many objects.
The new attributes of modal and epistemic propositions remain of the first order. Modal attributes of individuals are obtained from simpler attributes of individuals by quantifying universally or existentially over possible circumstances. They are *necessitations* and *possibilizations* of simpler attributes. Thus an object under concept c_e possesses the *necessitation* $\Box R_1$ of a property R_1 when it possesses that property in all possible circumstances. Epistemic attributes of the form aR_n are also of the first order. They are satisfied by sequences of objects under concepts which satisfy according to agent a the simpler attribute R_n. One can analyze them thanks to a relation of compatibility Belief^a_\simeq between possible denotation assignments that takes into consideration beliefs that agent a could have at each moment m. First of all, whoever has a particular belief is able to determine under which conditions that belief is true. He or she has then in mind attributes and concepts of that belief. In order to believe that Descartes is not a janissary one must understand the property of being a janissary. According to any possible denotation assignment val each agent a has in mind a certain set $\text{val}(a,m)$ of propositional constituents at each moment m and the agent has then beliefs about the denotations of these constituents in certain (generally not all) possible circumstances.

The relation Belief^a_\simeq serves to determine the exact nature of these beliefs. Suppose that according to the denotation assignment val the agent a believes at the moment m that certain concepts and attributes have such and such denotations in such and such possible circumstances. A possible denotation assignment val' is *compatible with what the agent a then believes according to the assignment val* (in symbols $\text{val}' \in \text{Belief}^a_\simeq(\text{val})$) when according to val' the same concepts and attributes have the same possible denotations in the same possible circumstances. So if according to assignment val the agent a believes at moment m that an individual object u falls under a certain concept c_e in the circumstance m/h then according to any compatible assignment $\text{val}' \in \text{Belief}^a_\simeq(\text{val})$, $u = \text{val}'(c_e,m/h)$. The concept c_e however could have according to a

8 More generally, the necessitation $\Box R_n$ of an attribute R_n satisfies the meaning postulate: $<c_1,\ldots,c_n> \in \text{val}(\Box R_n,m/h)$ when, for every m'/h', $<c_1,\ldots,c_n> \in \text{val}(R_n,m'/h')$. See G. Bealer *Quality and Concept* [1982] for the intensional logic of attributes.

8 A belief with undetermined truth conditions would be a belief without real content. It would not be a belief at all.
compatible assignment \(\text{val}' \) a different possible denotation \(\text{val}'(c,e,m'/h') \neq \text{val}(c,e,m'/h') \) in another possible circumstance \(m'/h' \) that agent \(a \) does not consider.

By definition, the relation of epistemic compatibility corresponding to \(\text{Belief}_a^k \) is transitive: if \(\text{val}' \in \text{Belief}_a^k(\text{val}) \) and \(\text{val}'' \in \text{Belief}_a^k(\text{val}') \) then \(\text{val}'' \in \text{Belief}_a^k(\text{val}). \)

Whoever has a belief believes that he or she has that belief. But that relation is neither reflexive nor symmetric.\(^{10}\) Moreover, the set \(\text{Belief}_a^k(\text{val}^*) \) that serves to determine the real beliefs of agent \(a \) at moment \(m \) is the set \(\text{Val}(a,m) \) already defined. As one can expect, an object under concept \(c_e \) possesses according to the agent \(a \) the property \(R_1 \) in a circumstance \(m/h \) (in symbols \(c_e \in \text{val}^*(aR_1,m/h) \)) when according to all assignments \(\text{val}' \in \text{Val}(a,m) \) that object has that property in that circumstance.\(^{11}\) Of course, the agent \(a \) has no beliefs at all at the moment \(m \) according to \(\text{val} \) when the set \(\text{Belief}_a^k(\text{val}) \) is the whole set \(\text{Val}. \) In that case, the set \(\text{val}(a,m) \) is empty. He or she does not then have in mind anything.

What are the possible truth conditions of complex propositions? We determine them by respecting obvious meaning postulates. A truth functional negation \(\neg P \) is true in a possible circumstance according to a possible denotation assignment to its constituents when the proposition \(P \) is not true in that circumstance according to that assignment. A conjunction \((P \land Q) \) is true in a circumstance according to a denotation assignment when both conjuncts \(P \) and \(Q \) are true in that circumstance according to that assignment. The modal proposition \(\Box P \) that it is logically necessary that \(P \) is true according to a denotation assignment in a possible circumstance when proposition \(P \) is true according to that assignment in all possible circumstances. Finally, the proposition \(\text{Bel}_aP \) that agent \(a \) believes that \(P \) is true in a circumstance \(m/h \) according to a denotation assignment \(\text{val} \) when according to that assignment the agent \(a \) has in mind at moment \(m \) all the constituents of \(P \) and the proposition \(P \) is then true in the proper history \(h_m \) of that moment according to all assignments \(\text{val}' \in \text{Belief}_a^k(\text{val}) \) which are compatible with

\(^{10}\) For any human agent can have false beliefs. Moreover an agent \(a \) could have new beliefs at moment \(m \) according to a compatible assignment \(\text{val}' \in \text{Belief}_a^k(\text{val}). \) He or she could believe that propositional constituents of \(\text{val}(a,m) \) have certain possible denotations in other circumstances. He or she could also have in mind other constituents. The assignment \(\text{val} \) could not respect these new beliefs that agent \(a \) has according to assignment \(\text{val}' \) at moment \(m \).

\(^{11}\) More generally, epistemic attributes of the form \(aR_n \) satisfy the meaning postulate: \(<c^1,\ldots,c^\|> \in \text{val}(aR_n,m/h) \) when according to all assignments \(\text{val}' \in \text{Belief}_a^k(\text{val}). <c^1,\ldots,c^\|> \in \text{val}(aR_n,m/h). \)
what that agent then believes according to assignment \(\text{val} \). As Occam pointed out, when we believe at a moment a future proposition that proposition is true according to us in the history that will be the continuation of that moment.

There are two borderline cases of truth conditions. Sometimes the proposition is true according to every possible denotation assignment to its constituents. It is a pure tautology. Sometimes it is true according to none. It is a pure contradiction. In my analysis, tautologies only have the universal truth condition that corresponds to the set of all possible circumstances and contradictions the empty truth condition that corresponds to the empty set. So tautologies (and contradictions) are special cases of necessarily true (and necessarily false) propositions. Tautologies are also a priori and analytically true (and contradictions a priori and analytically false).\(^{12}\)

1.5 The new criterion of propositional identity

Identical propositions have the same structure of constituents and they are true in the same possible circumstances according to the same possible denotation assignments to their constituents. Propositions which are true according to the same possible denotation assignments have the same possible truth conditions. So the set of propositions \(\text{U}_p \) is a subset of \(\mathcal{P}\text{Predications} \times (\text{Circumstances} \rightarrow \mathcal{P}\text{Val}) \). Each proposition is an ordered pair containing first the finite non empty set of its predications and second a function associating with each possible circumstance the set of all possible denotation assignments according to which it is true in that circumstance.

My criterion of propositional identity is much finer than that of modal, temporal, intensional and relevance logics. My logic distinguishes strictly equivalent propositions with a different structure of constituents. We do not make the same predications in expressing them. So there are a lot of different necessarily true and necessarily false propositions and not only two as classical logic wrongly claims. Predicative logic moreover distinguishes strictly equivalent propositions which are not true in the same circumstances according to the same possible denotation assignments. They do not have the same possible truth conditions. So we do not understand in the same way under which conditions they are true. Consider the elementary proposition that the biggest

\(^{12}\) The necessary truth of tautologies is then metaphysical, logical and epistemic.
whale is a fish and the conjunction that the biggest whale is and is not a fish. Both are composed from a single elementary proposition predicating of the biggest whale the property of being a fish. And both are necessarily false. In all possible circumstances where they exist, whales are mammals. They all have in common that *essential property*. However the two propositions have a different cognitive value. We can believe the first but not the second. Unlike Parry13 I distinguish such strictly equivalent propositions with the same structure of constituents. The first is true according to many possible denotation assignments but the second according to none. It is a contradiction.

1.6 Truth definition

In the philosophical tradition, from Aristotle to Tarski, *truth* is based on *correspondence* with reality. True propositions represent how objects are in the actual world. Objects of reference have properties and stand in relations in possible circumstances. However they could have many other properties and stand in many other relations in these circumstances. In addition to ways in which things are, there are possible ways in which they could be. We consider a lot of possible truth conditions in expressing and understanding propositional contents. The truth of propositions is compatible with many possible ways in which objects could be. However in order that a proposition be true in a given circumstance, things must be in that circumstance as that proposition represents them. Otherwise, there would be no correspondence. Along these lines, a proposition *is true in a possible circumstance* when it is true according to any denotation assignment associating with its constituents their real denotation in every circumstance. Many possible circumstances are not actual: their moment just belong a possible inactual course of history of this world True propositions correspond to existing facts. So they are true at a moment in the actual course of history of this world. Classical laws of truth theory follow from my concise definition.

1.7 Cognitive aspects in the theory of truth

As I said earlier, to each agent a and moment m there corresponds a unique set $\text{Val}(a,m)$ containing all the possible denotation assignments to senses *compatible with what that agent believes at that moment*. Whenever the agent a is provided with

13 Parry elaborated a logic of *analytic implication*. See “Comparison of Entailment Theories” [1972]
consciousness, the set $Val(a,m)$ is restricted; $Val(a,m) \neq Val$. Thanks to my conceptual apparatus logic can now define the subjective notion of truth according to an agent: a proposition is true in a circumstance according to an agent a at a moment m when that agent a has in mind at the moment m all its constituents and that proposition is true in that circumstance according to all possible assignments $val \in Val(a,m)$ that are compatible with his or her beliefs at that moment. In particular, an agent believes a proposition at a moment when that proposition is then true in the proper history of that moment. As one can expect, tautological propositions are true and contradictory propositions are false according to all agents who have them in mind. But impossible propositions which are not contradictory can be true and necessary propositions which are not tautological can be false according to agents at some moments. For they have other possible truth conditions than the empty and the universal truth condition respectively.

So the logic of language imposes different limits on reality and thought. Necessarily false propositions represent impossible facts that could not exist in reality and that we could not experience. In my view, there is need to postulate impossible circumstances where such impossible facts would exist. Impossible facts are objectively impossible. In any possible circumstance where there are whales they are mammals and not fishes. So many ways in which we can think of objects do not represent possible ways in which these objects could be. Certain objectively impossible facts e.g. that whales are fishes are subjectively possible. We can wrongly believe that they exist. Their existence is compatible with certain possible denotation assignments to senses that do not respect essential properties. But corresponding possible truth conditions are subjective rather than objective possibilities.

1.8 The notion of strong implication

We, human beings are not perfectly rational. Not only we make mistakes and are sometimes inconsistent. But moreover we do not draw all valid inferences. We believe (and assert) propositions without believing (and asserting) all their logical consequences. However we are not completely irrational. On the contrary, we manifest a minimal rationality in thinking and speaking. First we know a priori that certain propositions are necessarily false (for example, contradictions). So we cannot believe
them nor attempt to do things that we know impossible.14 Moreover, we always draw certain valid inferences. We know \textit{a priori} that certain propositions cannot be true unless others are also true, since we know \textit{a priori} the truth of tautologies with a conditional propositional content. In that case we cannot believe (or assert) the first propositions without believing (or asserting) the others. There is an important \textit{relation of strict implication} between propositions due to C.I. Lewis that Hintikka15 and others have used to explain to which beliefs agents are committed. A proposition \textit{strictly implies} another whenever that other proposition is true in every possible circumstance where it is true. According to Hintikka, whoever believes a proposition \textit{eo ipso} believes all others that it strictly implies. However we ignore which propositions are related by strict implication, just as we ignore which are necessarily true.

So we need a propositional implication much finer than strict implication in epistemic logic. Predicative logic can rigorously define that finer propositional implication that I call \textit{strong implication}. A proposition \textit{strongly implies another} proposition when firstly, it has the same or a richer structure of constituents and secondly, it \textit{tautologically implies} that other proposition in the following sense: whenever it is true in a possible circumstance according to a possible denotation assignment the other is also true in that circumstance according to that same assignment. Unlike strict implication, \textit{strong implication is known a priori}. Whenever a proposition \(P\) strongly implies another \(Q\), we cannot express that proposition without knowing \textit{a priori} that it strictly implies the other. For in expressing \(P\), we have by hypothesis in mind all elementary propositions of \(Q\). We make all the corresponding acts of reference and predication. Furthermore, in understanding the truth conditions of proposition \(P\), we distinguish \textit{eo ipso} all possible denotation assignments to its propositional constituents which are compatible with its truth in any circumstance. These are by hypothesis compatible with the truth of proposition \(Q\) in the same circumstance. Thus, in expressing \(P\), we know for certain that \(Q\) follows from \(P\). Belief and knowledge are then closed under strong rather than strict implication in epistemic logic.

14 See my contribution “Attempt, Success and Action Generation: A Logical Study of Intentional Action” [2005]
15 See J. Hintikka \textit{Knowledge and Belief} [1962]
Formal semantics for a minimal epistemic logic

2.1 The ideographical object – language \mathcal{L} of that epistemic logic

Its lexicon contains a series of individual constants naming agents and a series of propositional constants expressing propositions.

The syncategorematic expressions are: \neg, \Box, Tautological, Bel, \land, \geq, (and)

Here are the rules of formation. Any propositional constant is a propositional formula of \mathcal{L}. If A_p and B_p are propositional formulas of \mathcal{L} so are $\neg A_p$, $\Box A_p$, TautologicalA_p,

$(A_p \geq B_p)$, $(A_p \land B_p)$ and BelaA_p, for any individual constant a. $\neg A_p$ expresses the negation of the proposition expressed by A_p. $\Box A_p$ expresses the modal proposition that it is logically necessary that A_p and TautologicalA_p the proposition that it is tautological that A_p. BelaA_p expresses the proposition that the agent named by a believes that A_p. $(A_p \land B_p)$ expresses the conjunction of the two propositions expressed by A_p and B_p. Finally, $(A_p \geq B_p)$ means that the proposition that A_p has the same or a richer structure of constituents than the proposition that B_p.

2.2 Rules of abbreviation

I will use the usual rules of abbreviation for the elimination of parentheses and the connectives \lor of disjunction, \Rightarrow of material implication, \Leftrightarrow of material equivalence, \Diamond of logical possibility and $\dashv\vdash$ of strict implication. Here are rules of abbreviation for new notions:

Analytic implication: $A_p \rightarrow B_p =_{df} (A_p \geq B_p) \land (A_p \dashv\vdash B_p)$

Strong implication: $A_p \implies B_p =_{df} (A_p \geq B_p) \land \text{Tautological} (A_p \Rightarrow B_p)$

Propositional identity: $A_p = B_p =_{df} A_p \implies B_p \land B_p \implies A_p$

Same structure of constituents: $A_p \equiv B_p =_{df} (A_p \geq B_p) \land (B_p \geq A_p)$

Strong psychological commitment: Bela$A_p \twoheadrightarrow\text{Bela}B_p =_{df}$ Bela$A_p \implies \text{Bela}B_p$

Weak psychological commitment: Bela$A_p \triangleright \text{Bela}B_p =_{df} \text{Bela}A_p \implies \neg\text{Bela} \neg B_p$

Certainty: Certaina$A_p =_{df}$ Bela$A_p \land \text{Tautological}A_p\text{16}$

16 I can only deal here with certainties whose propositional content is necessarily true.
2.3 Definition of a model structure

A standard model \mathcal{M} for \mathcal{L} is a structure $\langle \text{Moments}, \text{Individuals}, \text{Agents}, \text{Concepts}, \text{Attributes}, \text{Val}, \text{Predications}, \text{Belief}, \ast, \otimes, \mathcal{P} \rangle$, where Moments, Individuals, Agents, Concepts, Attributes, Val and Predications are non empty sets and Belief, \ast, \otimes and \mathcal{P} are functions which satisfy the following clauses:

- The set Moments is a set of moments of time. It is partially ordered by a temporal relation \leq as in ramified temporal logic. $m_1 < m_2$ means that moment m_1 is anterior to moment m_2. By definition, $<$ is subject to historical connection and no downward branching. Any two distinct moments have a common historical ancestor. Moreover, the past is unique: if $m_1 < m$ and $m_2 < m$ then either $m_1 = m_2$ or $m_1 < m_2$ or $m_2 < m_1$. A maximal chain h of moments is called a history. It represents a possible course of history of the world. The set Circumstances of all possible circumstances contains all pairs m/h where m is a moment belonging to the history h. Among all histories to which belongs a moment m there is one h_m representing how the world would continue after that moment. If $m' \in h_m$, $h_{m'} = h_m$.

- The set Individuals is a set of possible individual objects. For each moment m, Individuals_m is the set of individual objects existing at that moment. Agents is a non empty subset of Individuals containing persons.

- Concepts is the set of individual concepts and Attributes is the set of attributes of individuals considered in model \mathcal{M}. For each natural number n, $\text{Attributes}(n)$ is the subset of Attributes containing all attributes of degree n.

- The set Val is a proper subset of $(\langle \text{Concepts} \times \text{Circumstances} \rangle \rightarrow (\text{Individuals} \cup \{\emptyset\})) \cup \bigcup_n ((\text{Attributes}(n) \times \text{Circumstances}) \rightarrow \mathcal{P}(\text{Concepts}^n))$. Val contains all possible denotation assignments of the model \mathcal{M}. Such assignments are also called possible valuations of constituents. For any possible circumstance m/h, $\text{val}(c_e, m/h) \in \text{Individuals}$ when individual concept c_e has a denotation in the circumstance m/h according to assignment val. Otherwise $\text{val}(c_e, m/h) = \emptyset$. For any attribute R_n of degree n, $\text{val}(R_n, m/h) \in \mathcal{P}(\text{Concepts}^n)$. The set Val contains a real valuation val_M which assigns to concepts and attributes their actual denotation in each possible circumstance according
to the model \mathcal{M}. Moreover, there corresponds to each agent a, moment m and assignment val a particular set $val(a,m)$ containing all propositional constituents that the agent a has in mind at that moment according to that assignment.

- **Belief** is a function from $\text{Agents} \times \text{Moments} \times \text{Val}$ into $\mathcal{P}(\text{Val})$ that associates with any agent a, moment m and valuation val, the set $\text{Belief}^a(val) \subseteq \text{Val}$ of all possible denotation assignments which are compatible with the beliefs that agent a has at the moment m according to that valuation. The relation of epistemic compatibility corresponding to Belief^a is transitive. Moreover, $val(a,m) \subseteq val'(a,m)$ when $val' \in \text{Belief}^a(val)$. As one can expect, $\text{Belief}^a(val,\mathcal{M}) = \text{Val}$ when $a \notin \text{Individuals}_m$.

- The set Predications is a subset of $\mathcal{P}(\text{Attributes} \cup \text{Concepts}) \times \mathcal{P}\text{Circumstances}$ that contain all predications that can be made in the language \mathcal{L}. Each member of that set is an ordered pair of the form (R_n, c^1, \ldots, c^k) whose first element is the set of propositional constituents $\{R_n c^1, \ldots, c^k\}$ and whose second element is the set of all possible circumstances m/h such that $<c^1, \ldots, c^k> \in val_M(R_n, m/h)$. The power set $\mathcal{P}\text{Predications}$ is closed under union \cup, a modal unary operation $*$ and, for each agent a, a unary epistemic operation \otimes_a of the following form: For any Γ, Γ_1 and $\Gamma_2 \in \mathcal{P}\text{Predications}$, $\Gamma \subseteq \ast \Gamma$ and $\Gamma \subseteq \otimes_a \Gamma$. Moreover, $\ast(\Gamma_1 \cup \Gamma_2) = \ast \Gamma_1 \cup \ast \Gamma_2$ and $\ast \ast \Gamma = \ast \Gamma$. Similarly, $\otimes_a (\Gamma_1 \cup \Gamma_2) = \otimes_a \Gamma_1 \cup \otimes_a \Gamma_2$ and $\otimes_a \otimes_a \Gamma = \otimes_a \Gamma$. By definition, when all propositional constituents in Γ belong to $val(a,m)$, so do all those in $\otimes_a \Gamma$.

- $\llbracket \rrbracket$ is an interpreting function which associates with each individual constant a an agent $\llbracket a \rrbracket \in \text{Agents}$ and with each propositional formula A_p the proposition $\llbracket A_p \rrbracket$ that is expressed by that formula according to the model \mathcal{M}. In my analysis, each proposition has two essential features: the set of all its predications and the set of possible denotation assignments according to which it is true. So the set U_p of all expressible

17 Only existing agents can have beliefs.

18 As one can expect, each agent who has beliefs has beliefs about himself. In particular given the transitivity of Belief^a, whoever has a belief also believes that he or she has that belief.
propositions is the smallest subset of $\mathcal{P}Predications \times (\text{Circumstances} \rightarrow \mathcal{P}Val)$ that is defined recursively as follows:

- U_p contains all elementary propositions P whose first element id_1P is a singleton of the form $\{(R_n, c^1, \ldots, c^p)\}$ and whose second element id_2P is the function that associates with each circumstance m/h the set $\{val/ <c^1, \ldots, c^p> \in val(R_n, m/h)\}$.

The set U_p is closed under operations corresponding to our logical connectives:

- $id_1\neg Bp = id_1Bp$ and $id_2\neg Bp((m/h)) = Val$.
- $id_1\Box Bp = *id_1Bp$ and $id_2\Box Bp((m/h)) = Val$ when $id_2Bp((m/h)) = Val$. Otherwise, $id_2\Box Bp((m/h)) = \emptyset$.

- $id_1(Bp \land Cp) = id_1Bp \cup id_1Cp$ and $id_2Bp \land Cp((m/h)) = id_2Bp((m/h)) \cap id_2Cp((m/h))$.

- $id_1(Bp \geq Cp) = *(id_1Bp \cup id_1Cp)$ and $id_2Bp \geq Cp((m/h)) = Val$ when $id_2Bp((m/h)) \supseteq id_1Cp$. Otherwise, $id_2Bp \geq Cp((m/h)) = \emptyset$.

- Finally, $id_1\text{Bel}_aBp = \otimes a id_1Bp)$ where $\|a\| = a$ and $id_2\text{Bel}_aBp((m/h)) = \{val \in Val/ \text{firstly, for all } (R_n, c^1, \ldots, c^p) \in id_1Bp, \{R_n, c^1, \ldots, c^p\} \subseteq val(\|a\|,m) \text{ and secondly, Belief}_a^m(val) \subseteq id_2Bp((m/h))\}$.

2.4 Definition of truth and validity

A propositional formula A_p of \mathcal{L} is **true** in a possible circumstance m/h according to a standard model \mathcal{M} if and only $\|A_p\|$ is true in m/h according to $val\mathcal{M}$. The formula A_p is **valid** (in symbols: $\models A_p$) when it is true in all possible circumstances according to all standard models of \mathcal{L}.

19In other words, any valuation val compatible with the fact that an agent a believes a proposition $\|Bp\|$ in a circumstance w must satisfy two conditions. Firstly according to that valuation the agent a must have beliefs about all propositional constituents of the believed proposition $\|Bp\|$ in circumstance w. Secondly, all possible denotation assignments val' which are compatible with the beliefs of that agent in that circumstance according to that valuation must themselves be compatible with the truth of that believed proposition in circumstance w.

17
3 An axiomatic system

I conjecture that all and only valid formula are provable in the following axiomatic system:

3.1 Axioms

The axioms of my system are all the instances in the object-language of classical axiom schemas of truth functional logic and S5 modal logic and instances of the following new schemas:

Axiom schemas for tautologies

(T1) \(\text{Tautological} A_p \Rightarrow \Box A_p \)

(T2) \(\text{Tautological } A_p \Rightarrow \text{Tautological } \text{Tautological} A_p \)

(T3) \(\neg \text{Tautological } A_p \Rightarrow \text{Tautological } \neg \text{Tautological} A_p \)

(T4) \(\text{Tautological} A_p \Rightarrow (\text{Tautological } (A_p \Rightarrow B_p) \Rightarrow \text{Tautological } B_p) \)

(T5) \((A_p \geq B_p) \Rightarrow \text{Tautological} (A_p \geq B_p) \)

(T6) \(\neg (A_p \geq B_p) \Rightarrow \text{Tautological } \neg (A_p \geq B_p) \)

Axiom schemas for propositional identity

(I1) \(A_p = A_p \)

(I2) \((A_p = B_p) \Rightarrow (C \Rightarrow C^*) \) where \(C^* \) and \(C \) are propositional formulas which differ at most by the fact that an occurrence of \(B_p \) in \(C^* \) replaces an occurrence of \(A_p \) in \(C \).

(I3) \((A_p = B_p) \Rightarrow \text{Tautological } (A_p = B_p) \)

(I4) \(\neg (A_p = B_p) \Rightarrow \text{Tautological } \neg (A_p = B_p) \)

Axiom schemas for belief

(B1) \((\text{Bela} A_p \land \text{Bela} B_p) \Rightarrow \text{Bela} (A_p \land B_p) \)

(B2) \(\text{Tautological} A_p \Rightarrow \neg \text{Bela} \neg A_p \)

(B3) \(\text{Bela} A_p \Rightarrow ((A_p \leftrightarrow B_p) \Rightarrow (\text{Bela} B_p)) \)

(B4) \(\text{Bela} A_p \leftrightarrow (\text{Bela} \text{Bela} A_p) \)
(B5) $\text{Bela}_p \Rightarrow \text{Bela} \bullet A_p$

Axiom schemas for propositional composition

(C1) $A_p \geq A_p$
(C2) $(A_p \geq B_p) \Rightarrow (B_p \geq C_p) \Rightarrow (A_p \geq C_p))$
(C3) $(A_p \land B_p) \geq A_p$
(C4) $(A_p \land B_p) \geq B_p$
(C5) $((C_p \geq A_p) \land (C_p \geq B_p)) \Rightarrow C_p \geq (A_p \land B_p)$
(C6) $A_p \equiv \neg A_p$
(C7) $\square A_p \equiv \text{Tautological} A_p$
(C8) $(A_p \geq B_p) \equiv \square (A_p \land B_p)$
(C9) $\square A_p \geq A_p$
(C10) $\text{Bela}_p \geq \square A_p$
(C11) $\neg A_p \equiv \square A_p$ And similarly for Bela.
(C12) $\square (A_p \land B_p) \equiv (\square A_p \land \square B_p)$ And similarly for Bela.
(C13) $\square \square A_p \equiv \square A_p$ And similarly for Bela.

3.2 Rules of inference

The two rules of inference of my axiomatic system are:

The rule of Modus Ponens: (MP) From sentences of the form A and $(A \Rightarrow B)$ infer B.

The tautologization rule: (RT) From a theorem A infer $\text{Tautological} A$.

4 Important valid laws of epistemic logic

4.1 Laws about the structure of constituents

A proposition has all the elementary propositions of its arguments. $\models A_p \geq B_p$ when B_p occurs in A_p. However modal and epistemic propositions have in general more elementary propositions than their arguments. Thus $\not\models A_p \geq \square A_p$ and $\not\models A_p \geq \text{Bela}_A p$.

4.2 Laws for tautologyhood

Tautologyhood is stronger than necessary truth and contradiction stronger than necessary falsehood. \(\models (\text{Tautological} A_p) \Rightarrow \Box A_p \). But \(\not\models \Box A_p \Rightarrow \text{Tautological} A_p \).

There are modal and epistemic tautologies. Thus \(\models \text{Tautological} (\Box A_p \Rightarrow A_p) \).

4.3 Agents are minimally rather than perfectly rational.

They do not believe all necessary truths and they can believe necessarily false propositions.

\(\not\models \Box A_p \Rightarrow \text{Bela} A_p \) and \(\not\models \neg \Diamond A_p \Rightarrow \text{Bela} \neg A_p \). However they are minimally consistent: they cannot believe that a tautology is false or that a contradiction is true. \(\models \text{Tautological} A_p \Rightarrow \neg \text{Bela} \neg A_p \) and \(\models \text{Tautological} \neg A_p \Rightarrow \neg \text{Bela} A_p \).

Now in order to believe a proposition an agent must have in mind its attributes and concepts. Unlike God, human agents do not have in mind all propositional constituents. Consequently they do not know or even believe all tautologies. \(\not\models \text{Tautological} A_p \Rightarrow \text{Bela} A_p \).

The limits of their language imposes limits to their thoughts. However whenever they express a tautology and a contradiction, they know just by apprehending their logical form that the first is necessarily true and the second necessarily false.

So \(\models \text{Tautological} A_p \Rightarrow (\text{Bela} A_p \Rightarrow (\text{Certaina} A_p)) \)

4.4 Laws for tautological implication

Tautological implication is much finer than strict implication. \(\models \text{Tautological} (A_p \Rightarrow B_p) \Rightarrow (A_p \leadsto B_p) \). But \(\not\models (A_p \leadsto B_p) \Rightarrow \text{Tautological} (A_p \Rightarrow B_p) \). Necessarily true propositions are strictly implied by others. \(\models \Box A_p \Rightarrow (B_p \leadsto A_p) \). But only tautologies can tautologically imply other tautologies. \(\models ((\text{Tautological} B_p) \land \text{Tautological} (A_p \Rightarrow B_p)) \Rightarrow \text{Tautological} A_p \). So \(\not\models \Box A_p \Rightarrow \text{Tautological}(B_p \Rightarrow A_p) \).

Similarly necessarily false propositions strictly imply all other propositions. \(\models \Box \neg A_p \Rightarrow (A_p \leadsto B_p) \). But
only contradictions can tautologically imply contradictions. So $\not\equiv \square \neg A_p \Rightarrow \text{Tautological}(A_p \Rightarrow B_p)$.

Beliefs are not closed under tautological implication. $\not\equiv (\text{Tautological} (A_p \Rightarrow B_p)) \Rightarrow (\text{Bela}A_p \Rightarrow \text{Bela}B_p)$ Because $\not\equiv (\text{Tautological} (A_p \Rightarrow B_p)) \Rightarrow (A_p \geq B_p)$. However whoever believes a proposition cannot believe the negation of a proposition that the first tautologically implies. For the conjunction of both is a contradiction. This is why tautological implication generates weak psychological and illocutionary commitment. Any assertion that P weakly commits the agent to asserting any proposition Q that P tautologically imply according to illocutionary logic.\(^{20}\) Similarly, $\models \text{Tautological} (A_p \Rightarrow B_p) \Rightarrow (\text{Bela}A_p \neg \neg \text{Bela}
eg B_p)$ in epistemic logic

4.5 Laws for strong implication

Strong implication is a stronger kind of propositional implication than strict, tautological and analytic implications. It requires the same or a richer structure of constituents in addition to tautological implication. There are two reasons why a proposition can fail to strongly imply another. Firstly, the second proposition requires new predications. $\models \neg (A_p \geq B_p) \Rightarrow \neg (A_p \rightarrow B_p)$. In that case, one can think the first proposition without thinking the second. Secondly, the first proposition does not tautologically imply the other. In that case even if the first implies the second, one can ignore that implication.

So strong implication is finer than analytic implication which does not require tautological implication. $\not\equiv (A_p \rightarrow B_p) \Rightarrow (A_p \rightarrow B_p)$ So $\not\equiv (A_p \rightarrow B_p) \Rightarrow \text{Bela}A_p \Rightarrow \text{Bela}B_p$.

Unlike strict and tautological implications, strong implication is anti-symmetric. Consequently, $\models A_p \rightarrow B_p \Leftrightarrow ((A_p \land B_p) = A_p)$

Strong implication is decidable. For $\models A_p \geq B_p$ when all propositional constants which occur in B_p also occur in A_p. And $\models \text{Tautological} (A_p \Rightarrow B_p)$ when any semantic tableau of S5 modal logic for $(A_p \Rightarrow B_p)$ closes.

\(^{20}\) See “Success, Satisfaction and Truth in the Logic of Speech Acts and Formal Semantics” [2004]
Moreover, strong implication is finite: every proposition only strongly implies a finite number of others. For it contains a finite number of elementary propositions. In particular, a proposition only strongly implies the tautologies having its elementary propositions. $\models \text{Tautological } B_p \Rightarrow (A_p \leftrightarrow B_p \iff A_p \geq B_p)$. Similarly a contradiction only strongly the propositions having its elementary propositions. $\models \text{Tautological } \neg A_p \Rightarrow (A_p \leftrightarrow B_p \iff A_p \geq B_p)$

For all these reasons, strong implication is known a priori. $\models (A_p \leftrightarrow B_p) \Rightarrow (\text{Bela} A_p \Rightarrow \text{Certain} (A_p \Rightarrow B_p))$. However \leftrightarrow does not obey the rule of Modus Tollens. $\not\models (A_p \leftrightarrow B_p) \Rightarrow (A_p \geq B_p)$. So $\not\models (A_p \leftrightarrow B_p) \Rightarrow (\text{Bela} \neg B_p \Rightarrow \text{Bela} \neg A_p)$

4.6 Natural deduction

Valid laws of inference of natural deduction generate strong implication when their premises contain all propositional constants of their conclusion. Here are some laws:

The law of introduction of belief: $\models A_p \leftrightarrow B_p \Rightarrow \text{Bela} A_p \Rightarrow \text{Bela} B_p$

The law of elimination of conjunction: $\models (A_p \land B_p) \leftrightarrow A_p$ and $\models (A_p \land B_p) \leftrightarrow B_p$

The law of elimination of disjunction: $\models ((A_p \leftrightarrow C_p) \land (B_p \leftrightarrow C_p)) \Rightarrow (A_p \lor B_p) \leftrightarrow C_p$

Failure of the law of introduction of disjunction: $\not\models A_p \Rightarrow (A_p \lor B_p)$.

So strong implication is stronger than entailment which obeys the law of introduction of disjunction. Clearly $\not\models \text{Bela} A_p \Rightarrow \text{Bela} (A_p \lor B_p)$.

The law of introduction of negation: $\models A_p \Rightarrow O_t \Rightarrow (A_p \leftrightarrow \neg A_p)$ where O_t is any contradiction.

Failure of the law of elimination of negation: $\not\models (A_p \land \neg A_p) \Rightarrow B_p$

Agents can have relatively inconsistent beliefs. $\not\models (A_p \land \neg B_p) \Rightarrow \neg \Diamond \text{Bela} (A_p \land B_p)$

They are paraconsistent. $\not\models (A_p \land \neg B_p) \Rightarrow (\text{Bela} (A_p \land B_p) \Rightarrow \text{Bela} C_p)$

But they always respect the principle of non contradiction. $\models \neg \Diamond \text{Bela} (A_p \land \neg A_p)$

The law of elimination of material implication: $\models (A_p \land (A_p \Rightarrow B_p)) \Rightarrow B_p$
The law of elimination of necessity: \[\models \Box A_p \leftrightarrow A_p \]

The law of elimination of possibility: \[\models \Diamond A_p \leftrightarrow B_p \Rightarrow A_p \leftrightarrow B_p \]

4.7 Laws of propositional identity

All the classical Boolean laws of idempotence, commutativity, associativity and distributivity are valid laws of propositional identity: So \[\models Bel A_p = Bel (A_p \land A_p) \];
\[\models Bel (A_p \land B_p) = Bel (B_p \land A_p) \];
\[\models Bel (\neg (A_p \lor B_p)) = Bel (\neg A_p \land \neg B_p) \];
\[\models Bel (A_p \land (B_p \lor C_p)) = Bel ((A_p \land B_p) \lor (A_p \land C_p)) \] and \[\models Bel \Box (A_p \land B_p) = Bel (\Box A_p \land \Box B_p) \].

The classical laws of reduction are also valid: \[\models \neg \neg A_p = A_p \] and \[\models Bel Bel A_p = Bel A_p \]. Unlike hyperintensional logic, predicative logic does not require that identical propositions be intensionally isomorphic.\(^{21}\) First of all, as I said earlier, the order of predication does not always affect truth conditions. Similarly, the order and number of applications of propositional operations does not always affect the logical form. Clearly,
\[\models Bel (A_p \leftrightarrow B_p) = Bel (B_p \leftrightarrow A_p) \] Intensional isomorphism is too strong a criterion of propositional identity.

However, propositional identity requires more than the co-entailment advocated in the logic of relevance. As M. Dunn points out, it is unfortunate that \[A_p \lor (A_p \land B_p) \] co-entail each other.\(^{22}\) For most formulas of such forms are not synonymous. Co-entailment is not sufficient for synonymy because it allows for the introduction of new sense. \[\not \models A_p \leftrightarrow (A_p \land (A_p \lor B_p)) \]; \[\not \models Bel \land (A_p \lor (A_p \land B_p)) \text{ in epistemic logic.}\(^{23}\)

References

\(^{21}\) See Max J. Cresswell, "Hyperintensional Logic". *Studia Logica* [1975].

\(^{22}\) See his philosophical rumifications in Anderson et al [1992].

\(^{23}\) A general predicative logic of propositions dealing with generalization, logical and historic modalities, ramified time and action is fully developed in my next book *Logic Truth & Thought*.

Frege G.: 1970, "On Sense and reference" in P. Geach and M. Black (eds), Translations from the philosophical Writings of Gottlob Frege, Blackwell

Lewis C. I.: *A Survey of Symbolic Logic*, University of California Press, 1918

Strawson P.F.: *Subject and Predicate in Logic and Grammar*, Methuen, 1974

- Forthcoming, *Propositions, Truth & Thought*